Robust and Efficient Computation of Eigenvectors in a Generalized Spectral Method for Constrained Clustering

نویسندگان

  • Chengming Jiang
  • Huiqing Xie
  • Zhaojun Bai
چکیده

FAST-GE is a generalized spectral method for constrained clustering [Cucuringu et al., AISTATS 2016]. It incorporates the mustlink and cannot-link constraints into two Laplacian matrices and then minimizes a Rayleigh quotient via solving a generalized eigenproblem, and is considered to be simple and scalable. However, there are two unsolved issues. Theoretically, since both Laplacian matrices are positive semi-definite and the corresponding pencil is singular, it is not proven whether the minimum of the Rayleigh quotient exists and is equivalent to an eigenproblem. Computationally, the locally optimal block preconditioned conjugate gradient (LOBPCG) method is not designed for solving the eigenproblem of a singular pencil. In fact, to the best of our knowledge, there is no existing eigensolver that is immediately applicable. In this paper, we provide solutions to these two critical issues. We prove a generalization of Courant-Fischer variational principle for the Laplacian singular pencil. We propose a regularization for the pencil so that LOBPCG is applicable. We demonstrate the robustness and efficiency of proposed solutions for constrained image segmentation. The proposed theoretical and computational solutions can be applied to eigenproblems of positive semi-definite pencils arising in other machine learning algorithms, such as generalized linear discriminant analysis in dimension reduction and multisurface classification via eigenvectors. Proceedings of the 20 International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by the author(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Constrained Clustering by Examining Spectral Eigenvectors

This work focuses on the active selection of pairwise constraints for spectral clustering. We develop and analyze a technique for Active Constrained Clustering by Examining Spectral eigenvectorS (ACCESS) derived from a similarity matrix. The ACCESS method uses an analysis based on the theoretical properties of spectral decomposition to identify data items that are likely to be located on the bo...

متن کامل

Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems

A new algorithm for the computation of the spectral expansion of the eigenvalues and eigenvectors of a random non-symmetric matrix is proposed. The algorithm extends the deterministic inverse power method using a spectral discretization approach. The convergence and accuracy of the algorithm is studied for both symmetric and non-symmetric matrices. The method turns out to be efficient and robus...

متن کامل

Repeated Record Ordering for Constrained Size Clustering

One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...

متن کامل

Spectral clustering with eigenvector selection based on entropy ranking

Ng–Jordan–Weiss (NJW) method is one of the most widely used spectral clustering algorithms. For a K clustering problem, this method partitions data using the largest K eigenvectors of the normalized affinity matrix derived from the dataset. It has been demonstrated that the spectral relaxation solution of K-way grouping is located on the subspace of the largest K eigenvectors. However, we find ...

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017